Stably folded de novo proteins from a designed combinatorial library.
نویسندگان
چکیده
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins.
منابع مشابه
Directed evolution of the peroxidase activity of a de novo-designed protein.
Collections of de novo-designed proteins provide a unique opportunity to probe the functional potential of sequences that are stably folded, but were neither explicitly designed nor evolutionarily selected to perform any particular type of activity. A combinatorial library of folded proteins was designed previously using a strategy that exploits the binary patterning of polar and non-polar amin...
متن کاملBinding of small molecules to cavity forming mutants of a de novo designed protein.
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites...
متن کاملSolution structure of a de novo protein from a designed combinatorial library.
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins. Randomly generated sequences, however, rarely fold into well ordered protein-like structures. To enhance the quality of a library, diversity must be focused into those regions of sequence space most likely to yield well folded structures. We have constructed focuse...
متن کاملDe novo proteins from designed combinatorial libraries.
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins with interesting and important activities. Randomly generated sequences, however, rarely fold into well-ordered proteinlike structures. To enhance the quality of a library, features of rational design must be used to focus sequence diversity into those regions of se...
متن کاملSelf-assembled monolayers from a designed combinatorial library of de novo beta-sheet proteins.
A variety of naturally occurring biomaterials owe their unusual structural and mechanical properties to layers of beta-sheet proteins laminated between layers of inorganic mineral. To explore the possibility of fabricating novel two-dimensional protein layers, we studied the self-assembly properties of de novo proteins from a designed combinatorial library. Each protein in the library has a dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2003